Device & Platform Utilities#
用于检测和配置计算平台和设备的函数。
平台检测#
import genesis as gs
# Get platform before init
platform = gs.get_platform()
print(platform) # "Linux", "macOS", or "Windows"
# After init, access global
gs.init()
print(gs.platform) # Same result
设备信息#
import genesis as gs
gs.init(backend=gs.gpu)
# Get PyTorch device
device = gs.device
print(device) # cuda:0, mps:0, cpu, etc.
# Get active backend
backend = gs.backend
print(backend) # gs.cuda, gs.metal, gs.cpu, etc.
Backend 选择#
自动选择#
# GPU auto-selects based on platform
gs.init(backend=gs.gpu)
# Linux -> CUDA
# macOS -> Metal
手动选择#
# Force specific backend
gs.init(backend=gs.cuda) # NVIDIA CUDA
gs.init(backend=gs.metal) # Apple Metal
gs.init(backend=gs.cpu) # CPU fallback
随机种子#
import genesis as gs
# Set random seed for reproducibility
gs.init(seed=42)
# Or set later
gs.set_random_seed(42)
全局变量#
gs.init() 后,以下变量可用:
Variable |
Type |
Description |
|---|---|---|
|
str |
平台: “Linux”, “macOS”, “Windows” |
|
torch.device |
PyTorch 张量设备 |
|
gs.backend |
活动计算后端 |
|
float |
数值 epsilon(例如,1e-15) |
类型提示#
# Taichi types
gs.ti_float # Taichi float type
gs.ti_int # Taichi int type
gs.ti_vec3 # Taichi 3D vector
gs.ti_mat3 # Taichi 3x3 matrix
# PyTorch types
gs.tc_float # PyTorch float dtype
gs.tc_int # PyTorch int dtype
另请参阅#
Constants & Enums - 后端枚举
Tensor Utilities - 张量操作